Clinique

La thérapie génique : une réalité en ophtalmologie ?

Guylène Le Meur

Jusqu'au début de l'année 2018, la thérapie génique, qui est l'apport d'un gène «médicament» à une cellule cible, était pour l'ophtalmologie encore synonyme de recherche, d'hypothétique traitement éloigné de notre pratique. Or, cette année, le premier médicament de thérapie génique avec une indication en ophtalmologie a été approuvé par la FDA (Food and Drug Administration).

Ce médicament, le Luxturna® (voretigene neparvovecrzyl), est pour le moment seulement disponible aux États-Unis. Il a pour indication le traitement de l'adulte ou de l'enfant ayant une dystrophie rétinienne secondaire à une mutation biallélique confirmée du gène rpe65. Il faut toutefois que les patients aient encore suffisamment de cellules rétiniennes viables pour pouvoir bénéficier de ce traitement. L'autorisation auprès de la FDA a été obtenue sur l'amélioration des capacités de déplacement des patients lors de luminosités scotopiques au cours d'une étude de phase III réalisée chez 29 sujets [1]. Cette étude, chez les patients traités, a également montré une amélioration des acuités visuelles et des sensibilités rétiniennes lors des enregistrements FST après la réalisation du traitement [1]. Le produit peut être injecté chez des enfants de plus de 12 mois. Il est administré par une injection sous-rétinienne à chaque œil à quelques jours d'intervalle. L'administration doit être encadrée d'une prise de corticoïdes per os. Les mises en garde concernant l'utilisation de ce médicament sont le risque d'endophtalmie, de déclin permanent de l'acuité visuelle et des anomalies rétiniennes, d'augmentation de la pression intraoculaire, d'expansion des bulles d'air intraoculaires, et de cataracte à la suite de l'injection. Pour l'Europe, la demande d'autorisation de mise sur le marché (AMM) est en cours auprès de l'Agence européenne des médicaments (EMA).

L'amaurose congénitale de Leber a ouvert la voie

Ce nouveau médicament de thérapie génique en ophtalmologie est probablement le premier d'une série. En effet, dans le monde, quarante essais cliniques de thérapie génique ont été déposés sur le site officiel « *clinical*

trial». Le tableau rappelle toutes les indications ophtalmologiques de ces divers essais, les divers gènes à l'étude, les phases des essais, les numéros des essais ainsi que leurs critères d'inclusion et le lieu des recherches. Historiquement, c'est l'amaurose congénitale de Leber liée à la mutation du gène rpe65 qui a été la première maladie ophtalmologique génétique étudiée. L'équipe de Jean Bennett a été la première à publier des résultats de sécurité de ces essais cliniques en 2008 [2]. Au total, 6 équipes différentes ont publié leurs résultats concernant la thérapie génique des mutations du gène rpe65 (tableau). Toutes ces études rapportent une sécurité générale des injections de vecteurs AAV-RPE65 en sous-rétinien. Les améliorations fonctionnelles suite à l'injection unilatérale de ces vecteurs varient d'un sujet à l'autre, mais il est notamment rapporté des modifications plus ou moins importantes du niveau d'acuité visuelle et de la sensibilité du champ visuel [3-5] ou de la surface du champ visuel [6]. Il est aussi décrit une diminution du nystagmus [7] avec le développement d'une fixation de suppléance [8]. Le déplacement de ces patients, qui présentent une dystrophie rétinienne de type bâtonnets-cônes, est modifié par le traitement, avec une diminution du temps de déplacement associée à une diminution du nombre de percussions, notamment en faible éclairage lors d'un parcours minuté [7,9]. Les enregistrements d'IRM fonctionnelles, chez les patients, montrent des modifications de l'activité corticale suite aux injections [10]. L'équipe de Bennett a montré qu'il était possible de réaliser une injection dans les 2 yeux sans réaction immunitaire [11].

Service d'ophtalmologie, centre hospitalier universitaire, Nantes

Clinique

Clinique

Tableau. Divers essais cliniques de thérapie génique déclarés dans le monde selon https://clinicaltrials.gov à la date de mi-juillet 2018. Sixième colonne : condensé des critères d'inclusion ; pour plus de détails, consulter le site Internet avec le numéro de l'essai. RP : rétinopathie pigmentaire ; LNOH : atrophie optique de Leber ; AR : autosomique récessif.

Maladie	Gène	Phase	Numéro de l'essai	Essai / recrutement	Critères d'inclusion	Lieu
ACL	rpe65	1/11	NCT00749957	Terminé	> 6 ans, mutation rpe65, AV < 20/60	Oregon, États-Unis
		1	NCT01208389		Ayant participé essai NCT00516477	
ACL	rpe65	1	NCT00516477	Actif mais plus de recrutement	> 8 ans, mutation rpe65, AV > PL	Philadelphie, États-Unis
		Ш	NCT00999609		> 3 ans, mutation rpe65, AV < 20/60 ou CV < 20°	
ACL	rpe65	1	NCT00821340	Terminé	> 8 ans, mutation rpe65, AV < 20/50	Jérusalem, Israël
ACL	rpe65	1/11	NCT00643747	Terminé	8-30 ans, mutation rpe65, AV < 6/36	Moorfields H Londres, Grande-Bretagne
ACL	rpe65	I	NCT00481546	Actif mais plus de recrutement	> 8 ans, mutation rpe65, AV < 20/40	Philadelphia, États-Unis
r; ACL	rpe65	1/11	NCT01496040	Terminé	6-50 ans, mutation rpe65, AV < 0,32	CHU Nantes, France
ACL	rpe65	1/11	NCT02781480	Recrutement en cours	> 3 ans, mutation rpe65	Moorfields H Londres, Grande-Bretagne
ACL	i peoo	1/11	NCT02946879	Recrutement en cours	ayant participé essai NCT02781480	Moornetus II Londres, Orande-Dretagne
Choroïdérémie	СНМ	1/11	NCT01461213	Terminé	> 18 ans, mutation CHM, 1/10 < AV, atteinte maculaire	Oxford + autres centres, Grande-Bretagne
Choroïdérémie	СНМ	Ш	NCT02407678	Recrutement en cours	> 18 ans, mutation CHM, 20/200 < AV < 20/32, pas atteinte maculaire	Oxford+ Moorfields, Grande-Bretagne
Choroïdérémie	СНМ	1/11	NCT02077361	Terminé	> 18 ans, mutation CHM, atteinte maculaire	Edmonton, Canada
Choroïdérémie	СНМ	1/11	NCT02341807	Actif mais pas de recrutement	> 18 ans, mutation CHM, CV < 30° sur 6 méridiens sur 24 au III4	Philadelphia & Boston, États-Unis
Choroïdérémie	СНМ	Ш	NCT02553135	Terminé	> 18 ans, 20/200 < AV < 20/200	Miami, USA
Choroïdérémie	СНМ	Ш	NCT02671539	Actif mais pas de recrutement	> 18 ans, mutation CHM, 20/200 < AV < 20/32, pas atteinte maculaire	Tübingen, Allemagne
Choroïdérémie	СНМ	Ш	NCT03507686	Recrutement en cours	> 18 ans, mutation CHM, atteinte centrale, injection bilatérale acceptée	Miami, États-Unis
Choroïdérémie	СНМ	Ш	NCT03496012	Recrutement en cours	> 18 ans, mutation CHM, atteinte centrale	7 centres États-Unis, 2 centres Canada, 1 Finlande, 2 Allemagne, 1 Pays-Bas, 2 Grande-Bretagne
Stargardt	abcr	1/11	NCT01367444	Recrutement en cours	> 6 ans, mutation ABCA4, AV < 20/100	4 centres États-Unis et XV-XX, France
Stargardt	abcr	1/11	NCT01736592	Recrutement en cours	ayant participé essai NCT01367444	Portland, États-Unis et XV-XX, France
Usher 1B	MY07A	1/11	NCT01505062	Recrutement en cours	mutation gène MYOVIIA	Portland, États-Unis et XV-XX, France
Usher 1B	MY07A	1/11	NCT02065011	Recrutement en cours	mutation gene MYOVIIA, ayant participé essai NCT01505062	
Mertk RP AR	Mertk	I	NCT01482195	Recrutement en cours	14-70 ans, mutation MERTK, AV < 20/100	Riyadh, Arabie saoudite
Rétinoschisis lié X	RS1	1/11	NCT02317887	Recrutement en cours	> 18 ans, AV < 20/63	Bethesda, États-Unis
Rétinoschisis lié X	RS1	1/11	NCT02416622	Recrutement en cours	6-18 ans dernière cohorte	9 centres États-Unis
RP liée X	RPGR	1/11	NCT03116113	Recrutement en cours	> 18 ans, mutation RPGR, mâle	2 centres UK : Manchester, Oxford
RP liée X	RPGR	1/11	NCT03252847	Recrutement en cours	> 5 ans, mutation RPGR, mâle	Moorfields H, Londres, Grande-Bretagne
RP liée X	RPGR- ORF15	1/11	NCT03316560	Recrutement en cours	> 6 ans, mutation RPGR-ORF15, male, 65 lettres ou 75 lettres goupe 4	5 centres États-Unis
RP	optogene (RST-001)	1/11	NCT02556736	Actif mais pas encore de recrutement	> 18 ans	Dallas, États-Unis
RP	optogene	1/11	NCT03326336	Actif mais pas encore de recrutement	18-75 ans, RP AV = LP	NA
RP liée gène PDE6B	PDE6B	1/11	NCT03328130	Recrutement en cours	> 18 ans, mutation PDE6B	CHU Nantes, France
RP liée gène RLBP1	RLBP1	1/11	NCT03374657	Actif mais pas encore de recrutement	18-70 ans, mutation RLBP1	NA
Achromatopsie	CNGB3	1/11	NCT02599922	Actif	> 6 ans, mutation gène CNGB3, AV < 55 lettres ETDRS	5 centres États-Unis
Achromatopsie Achromatopsie	CNGB3	1/11	NCT03001310 NCT03278873	Recrutement en cours	3 à 100 ans, mutation CNGB3	Moorfields H, Londres, Grande-Bretagne
Achromatopsie	CNGA3	1/11	NCT02935517	Recrutement en cours	> 18 ans gpe1,2,3 ou > 6 ans gpe 4 < 55 lettres	5 centres USA + Israël
LNOH	ND4	I	NCT02161380	Recrutement en cours	18-60 ans, mutation G11778A. 3 gpes : atteintes chroniques, atteintes récente	Miami, États-Unis
LNOH	ND4	1/11	NCT02064569	Actif mais pas de recrutement	> 18 ans, mutation G11778A, AV < 1/10	
LNOH	ND4	Ш	NCT02652767	Actif mais pas de recrutement	> 18 ans, mutation G11778A, BAV datant de moins de 180 J pour un ou deux yeux. AV > CLD	Paris (CIC XV-XX), France
LNOH	ND4	I	NCT01267422	Terminé	8-60 ans, mutation G11778A	Tongji, Chine
LNOH	ND4	III	NCT03406104	Recrutement en cours	avoir été inclus dans études RESCUE ou REVERSE	Paris (CIC XV-XX) France, 3 centres États-Unis, Moorfields (Grande-Bretagne), Bologne (Italie), Munich (Allemagne)
LNOH	ND4	Ш	NCT03293524	Recrutement en cours	> 18 ans, mutation G11778A, BAV datant de moins de 365 J pour deux yeux	Colorado, États-Unis
LNOH	ND4	11/111	NCT03153293	Actif mais pas encore de recrutement	10-65 ans, mutation G11778A, AV < 0,3 deux yeux	Tongji, Chine
\						\

30 Les Cahiers d'Ophialmobgie n° 222 • Octobre 2018 n° 222 • Octobre 2018 Les Cahiers d'Ophialmobgie 31

Clinique

Des essais en cours pour d'autres maladies rétiniennes

Le traitement d'autres maladies rétiniennes héréditaires a également été étudié. Ces dernières années, il y a eu plusieurs déposes de dossiers d'essais cliniques concernant la choroïdérémie liée à l'X. Les premiers résultats de Mac Laren concernant cette maladie montrent une augmentation de la sensibilité rétinienne et le développement d'une fixation de suppléance au niveau des yeux traités suite à l'injection [12]. D'ailleurs, une étude de phase III va débuter. Concernant l'atrophie optique de Leber, actuellement seule la mutation G11778A, la plus fréquente en Europe, bénéficie de ces essais cliniques dont certains sont déjà en phase III. Ces essais ont démonté une sécurité des injections intravitréennes des

produits de thérapie génique [13], avec parfois une hypertonie oculaire transitoire ou une inflammation oculaire résolutive sous traitement anti-inflammatoire [14]. L'acuité visuelle semble être améliorée suite aux injections [13,14]. Les autres maladies rétiniennes dont le traitement par thérapie génique est étudié sont l'achromatopsie, la maladie de Stargardt, le syndrome de Usher de type 1 lié au gène MYO7A, le rétinoschisis lié à l'X, les dystrophies rétiniennes liées au gène Mertk, au gène Pde6B, au gène RLBP1, ou à l'X (tableau).

Cette dernière année, un traitement de thérapie génique en ophtalmologie a vu le jour. Le nombre d'essais cliniques actuellement en cours laisse à penser que nous devrions avoir à notre disposition dans les années futures des médicaments de thérapie génique pour nos patients atteints de maladies rétiniennes héréditaires.

Références bibliographiques

- [1] Russell S, Bennett J, Wellman JA *et al.* Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, openlabel, phase 3 trial. Lancet. 2017;390(10097):849-60.
- [2] Maguire AM, Simonelli F, Pierce EA *et al.* Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med. 2008; 358(21):2240-8.
- [3] Maguire AM, High KA, Auricchio A *et al.* Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose-escalation trial. Lancet. 2009;374(9701):1597-605.
- [4] Jacobson SG, Cideciyan AV, Ratnakaram R *et al.* Gene therapy for Leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol. 2012;130(1):9-24.
- [5] Weleber RG, Pennesi ME, Wilson DJ *et al.* Results at 2 years after gene therapy for RPE65-deficient Leber congenital amaurosis and severe early-childhood-onset retinal dystrophy. Ophthalmology. 2016;123(7):1606-20.
- [6] Le Meur G, Lebranchu P, Billaud F *et al.* Safety and long-term efficacy of AAV4 gene therapy in patients with RPE65 Leber congenital amaurosis. Mol Ther. 2018;26(1):256-68.
- [7] Simonelli F, Maguire AM, Testa F $\it et al.$ Gene therapy for Leber's congenital amaurosis is safe and effective through 1.5 years after

- vector administration. Mol Ther. 2010;18(3):643-50.
- [8] Cideciyan AV, Aguirre GK, Jacobson SG *et al.* Pseudo-fovea Formation after gene therapy for RPE65-LCA. Invest Ophthalmol Vis Sci. 2014;56(1):526-37.
- [9] Bainbridge JW, Mehat MS, Sundaram V *et al.* Long-term effect of gene therapy on Leber's congenital amaurosis. N Engl J Med. 2015;372(20):1887-97.
- [10] Ashtari M, Cyckowski LL, Monroe JF *et al.* The human visual cortex responds to gene therapy-mediated recovery of retinal function. J Clin Invest. 2011;121(6):2160-8.
- [11] Bennett J, Ashtari M, Wellman J *et al.* AAV2 gene therapy readministration in three adults with congenital blindness. Sci Transl Med. 2012;4(120):120ra15.
- [12] MacLaren RE, Groppe M, Barnard AR et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet. 2014;383(9923):1129-37.
- [13] Guy J, Feuer WJ, Davis JL *et al.* Gene therapy for Leber hereditary optic neuropathy: low- and medium-dose visual results. Ophthalmology. 2017;124(11):1621-34.
- [14] Vignal C, Uretsky S, Fitoussi S *et al.* Safety of rAAV2/2-ND4 Gene Therapy for Leber hereditary optic neuropathy. Ophthalmology. 2018;125(6):945-7.